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ABSTRACT

The longitudinal differential equation of Si  Switches for spline segments

motion has been used to investigate various (see Equations 4, ', and 6)

aerodvnamic expansion techniques. The total drag
coefficient was expanded using conventional V Velocity along the X axis

polynomials and splines with and without floating
knot locations. This paper discusses the various tnstantaneous velocitv
techniques and approaches, compares results
obtained from simultaneously fitting four Vref Reference velocity
separate flights (time vs distance measurements)
and outlines the potential advantages and/or X Downrange axis

disadvantages of the various aerodynamic
oxnanqion techniques. It is believed that this i Instantaneous pitch angle
is the firt time splines have been used in the
aerodynamic coefficient estimation process and Instantaneous yaw angle

that these results and techniques are germane to Total instantaneous angle of attack

other anlications.

4OMENCLATPRF K not locations in Equations 4, 5, and 6

'--'" . Air density
A Reference area

a roefficient in Equation I Superscripts

Ci  slopes of spline segments Time derivative

(ee Equations 4, 5, and 6)
INTRODUCTION

',til *
4
rag coefficient Prior to 1969, the prevalent method of

analyzing ballistic spark range data was hased on
".ero angle of attack dra coefficient the linear approximation method known as "linear

theory" developed by Murphv
i-2 

and others
3- 5

.
0,, qocond order drag term Stated briefly, the method uses a closed-form

;p Equations 2 and ) solution to the differential equations of
motion. This approximate solution results from

ro,irth order drag term (see Equation 3) assuming a linearized aerodynamic model where t'
"

aerodynamic force and moment derivatives are

~)rig variation due to velocity change constant with angle of attack (hence the name
"linear theory"). Murphv ,xtended this technii1'

7,ponpntial to include a quasi-nonlinear analysis
6 
where.onilthe linear aerodynamic force and moment

.1 'ndel mass derivatives are reduced in such a manner thatSmacertain nonlinearities could he obtained. This

So a iquasi-nonlinear analysis requires 3n assumed
1'..zro sqati ghn l sm functional form of the nonlinearity (normally a

quadratic or cubic polynomial).

ri )! reqii.alg ,irPd In 1969 Chapman and 'irk, in analyzing free
flight data 7 , documented the application of
technique they called parametric differentiati"

*''.-Awhich permitted the free flight differential
equation of motion to be used directly in the

h i , l r,i- j in. 1 pubi, dI i
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data correlation process. This technique of 6
2
. A straight line through this data

eliminated the requirement for closed-form yields the intercept, Cyo, and the sipt.,

solutions to the equations of motion. However, CD2 . The second continuous function is micl

is still required to assume a form of the more versatile and is valid for a wiler raneo o
nonlinear in the equations of motion. angle of attack denendence and a lin'ar v,

renerallv these forms have also been assumed co dependence, that is

.4 polvnomial expansions of the aerodynamic force

and moment derivatives with angle of attack
8- q

. . "

During the past several years, data analvsts

have discussed the possibility of using Note this expansion has five unknown

mathematical splines (two or more mathematical coefficients,,),,. a. CD,, CD4 . an'
ex ressions attached en,! to end) for the CD as do all the remaining expansio,'

coefficient expansions. These splines permit the techniques considered within this paper. Ti,

slopes of the aerodynamic expansions to be Pa term is somewhat unconventional but allows

iscontinuOus and would offer the analyst a more a nonzero slope at zero angle of attac.. The

rpneral aerodynamic model. thereby relieving some CD coefficient is normally small but ,r

of the requirements of assuming the form of the high drag configurations which experience lare

nonlinearities. This paver discusses various velocity decays during the flight or when

coefficient expansion techniques and compares time-distance data obtained from several flights

results obtained using the various expansions. (slightly different launch velocities) are
simultaneously analyzed this term can b imoor-

METHOD OF APPROACH tant. This CD term accounts for variations
in drag coefficients with Mach number an-

In order to evaluate the various expansion Reynolds number. The two effects cannot. he sim-

techniques (continuous function vs splines), we ply separated because they both depend linearly

will restrict our attention to a simple single on velocitv. This term appears in all - the

iegree of freedom svqtem rather than the full expansions discusqed except for the zla"ica:

six-degree of freedom system described in various quadratic dependence shown in Equation '2).

references.
8- 9

Several exnansions using spline finctionq

Longitudinal Momentum Equation were also evaluated. The first of thesp use5

multiple straight line segments (see Fizure 1)

This paper will examine the determination of and the general expansion is
the total drag coefficient (Cn) as a function
of instantaneous angle of attack and velocity Lb "

from the longitudinal momentum equation and the ,

associated experimental measurements of distance + C.(: -4 C

traveled vs time. The differential equation "
governing the longitudinal momentum is

where i is the index for the seement. ' ar.
the knot locations. Ci's are the slone, - ,ac

segment, and S;'s are the switches 'Si = or
I depending on whether or not the instantaneous

value of r is within the range of the

where - is the air density, A is the body segment). For the investigation discussed, the
reference area, m is the projectile mass, X is evaluations of the various expansion techniques
the longitudinal down range distance, and 0) were restricted to four unknown coefficients plus
and (--) indicate the first and second the CD term. Hence only two cases utilizing

derivatives with respect to time. The total drag straight line segments were considered. The first
coefficient, CD (-,V), depends on the insan-. case is three segments (n-3) with the knots fixed
taneous total angle of attack. .Jsin ,+ sin2f

'
, at '1, and :,. These knot locations wer.,

anl velocity, V = X. Fquation (l) assumes that chosen by dividine the * range into three equal

the angle between the velocity vector and the X parts, 1-max/3, :,-2 max/ 3 , :in max-
Sxis is small. The five unknown coefficients then become

C Dof C1 , C2 , C3 , and CD. Here it
the Total Drag Coefficient should be noted that other methods of dividing

the 5 space into segments and selecting the knot
locations were considered. Initially, it was

Several expansion techniques for CD were felt that the segments should be chosen such that
tigated. The first two involved continuous those associated with the higher angles of attack

nvtigated eng fisth two invosialveacn tiu would be small compared to the segments associ-
f0nctions, beginning with the classical quadratic ated with the smaller angles of attack. The
dependence on angle of attack, or reasoning for this was that it was assumed that

the rate of change of the drag coefficient with
2 (2) respect to I was much higher at large angles of

attack thereby requiring smaller segments.
Although this assumption is certainly true for
most free flight range data, the nature of a well

fqution (2) represents the classical expression behaved dynamicallv stable configuration in free
for which Murphan2 developed a mlethodolo y of flight is that the larger initial angles of

detinn CD a c by plotting the attack rapidly decrease (damps) during the
Sm r g coefficients vs the mean flight. Hence only a relatively few data points

f 335
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representing the initial ! igh angles of attack The second case utilizing straight line

are normally obtained compared with the ntmber of segments splined together possessed only two

data points associated with the smaller angles of segments, n-2 in Equation (4), but the knot

attack (for example, see Figure 2). Considering ('I) was allowed to be a free variable and

this, if a small segment was chosen for the determined by the data reduction procedure.

higher angles of attack, only a very few data Hence the five unknown coefficients become

points would fall within this segmetut thereby CDo,Cl,C 2 ,61 and CDV (see Figure 4).

invalidating the resultant slope parameter.

After this anomaly was recognized it was felt Another set of splines used in the present

that perhaps the knot locations should be investigation involves quadratic segments
qelpcrpd iuch that each segment contained an similar to Equation (2). Here. the knot

equal number of data points. However it locations are free variables and are determined
imeditely became obvious that due to the nature by the data reduction routine (see Figures Sa

of the data, a very small segment resulted at the and 5b). This expansion can be defined such

smaller angles of attack, where it wasn't needed, that not only is the CD function continuous at

and a large segent resulted at the large angles the knot, but also the derivative can be made

of attack where a small segment was desired (see continuous at the knot. Both of these

Figure 3). With these considerations is mind, approaches are discussed. First, consider the

dividing the range into equal parts appeared to approach where only CD is continuous at the

be a reasonable compromise. However, if this floating knot location. This expansion is

technique is applied to other free flight data written as

(i.e., Ivnamicallv unstable configurations) or to
another application altogether, the logic 2 + C + - --

aa.-iated with selecting the knot locations
qhoull ,)P revisited. r,!

C 4  C 5  Here CD , CI, C2 , '1, and CD are

the five free variables and the function has a
C3 1 / discontinuous slope at !1. S l and S2 are

C 2  the determining switches for the polynomials and

I Im are set similarly to those in Equation (4)

(i.e., if ;2 <12 then Sl - I and S2 -

I" 0 or if :2 > lz, then S. = n and S, =

,. This approach reauires the .?valuation of

|nlv one set of partial derivatives with respect

S I | to C1 or C- depending on the maenitude of ;2.

Equation (5) can be modified by adding an

________ _ |additional term such that the slope of the CD
vs curve is also continuous at the floating knot

4 max location to yield

,~" +' -2 -- 2. ]

*the uinknown coefficients f.ir t,: Pxpressinn are

the same as for Equation (5), anj the switches

are set similarly.

S!

I S

I"" *"a**

"-p..)r .ta. :""" A I I .,*I

S 2 ma I max
,I,

i '..
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There are many other spline expansions that time and distance data with the numerical
could be considered using five free unknown solution of Equation (1). This fitting process
coefficientst however, it is believed the ones is a least squares technique and the anglr of
defined herein are sufficient to illustrate the attack history is provided as an input. .h,.
applicabilitv and usefulness of these method used is the one described by Cha an An'
techniques. Kirk 7 . This method will be described br,'

to illustrate the technique when spline funoiron
are employed for expansion of the total drap,
coefficient. The steps utilized in applvin;! tho
technique are as follows:

I. Identifvformulate the associate!

Dequation of motion. For the applicatior
discussed this has been accomplished ani is
Equation (1).

2. Select an appropriate expansion of th.
aerodynamic coefficients. This step is r!,

I subject of this paper: the investigation of
_-",.___a several expansion techniques as defined inmax 1 Equations (2) through (6).

max

3. Partially differentiatinR :he equati n
of motion, Equation (1). with respect to each of.w~. str, pt 'in, wgcnt h ilh the free unknown coefficients, form a set o

,,atin, knot I. parametric differential equations. This i,

illustrated below by using the expansion shown in
Equation (5). Let

, 5_ Pi= n = (7)
CDc) 3

CDo 5 I > ' ' ,' . .• n

Applying this to Equations (1) and (2) theI
I following set of parametric differentialA2 2 equations are derived.

lV max

- - l-*: i - '" :''

a. Dvs 2

-" Y f> (' -7,) - 25 ."" ,(
,,

,)
RX

- oIwhere K is ,Af2m and ( )o implies th qLan:it%

was evaluated with given coefficients (either
I initial guesses or corrected values) at the start
I of each iteration cycle.

Smax
x4. Numerically integrate the equation of

motion, Equation (1), utilizing initial guesses
b. CD vs 8 for the unknown aerodynamic coefficients and

estimated initial conditions (Xe and i.) .

The numerical integration technique used is a
Gauss-Newton iterative method.Fig. 5 Two quadratic segments with floating

knot location 5. Integrate parametric equations,
Equations (8), numerically such that the partial
derivatives with respect to each of the free

P er Identification unknown coefficients are evaluated.

The unknown free coefficients in the various 6. The method of differential correctionsexpansions Equations (2) through (6) are is then used to obtain corrections to the initial
determined by fitting the experimentally measured guesses of the unknown aerodynamic coefficients

33i'
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and estimated initial conditions (Xe and expansions were evaluated by simultaneously
iX). This method consists of expanding the fitting four sets of experimentally measured time

calculated value of position Xi cal about a and distance data obtained from four separate

given set of coefficients in a Taylor series. Or flights of a 25am spin stabilized projectile
tested in the Aeroballistics Research
Facilityl0 . This set of data was used to
evaluate the CD expansions because of the

. "ia! ,c C relatively high angles of attack experiencedO (9) during some of the flights and the apparent
* :, h(.r ,rrer Terr highly nonlinear characteristics of CD with

total angle of attack. The initial velocity
(muzzle) varied from 3168 to 3245 ft/sec for the
four flights and the average mid-range velocity

Note the subscript o again indicates calculated (VREF) of all four flights being 3098 ft/sec.
values using the given set of coefficients and
the summation, ignoring the higher order terms,
provides the contribution to Xi cal associated Here it should he cautioned that because

with small changes in the coefficients some of the expansion techniques fit this

(Ci's). The sum of the squares of the particular set of data better than others, it

residuals, RSQ, (difference between measured and doesn't necessarily mean that one expansion

calculated downrange distance traveled) is given method is superior to another. In fact, the
analyst should recognize that when selecting an
expansion (whether it is one of the expansions
discussed herein or another) for a particular

.O - (10) application the inherent nature of the data

itself should be the dominate consideration. For
example, if time and position data obtained from

The subscript i denotes the i-th measurement and the flight of a sphere were being analyzed (angle

the total number of measurements. Equation of attack is of no concern) the expansion would

(10) can accomodate the reduction/analysis of only include the.C and C terms. Or,
several simultaneous data sets: however, for if a highly nonlinear spring-mass-damper system

simplicity the notation will indicate only one was being analyzed, the frequency of oscillation

set of time and distance measurements (see and/or damping may be modeled as a function of

IFfprence It f r details on 5"oultaneous fitting the displacement using multiple straight line

Sif nq!ri- . Lta sets). segments with or without 'boating knots. For
this case, one may possess information which

:, w s'Ohstititing Equation (O into Equation identifies where the knot should be located.
'!0 -w takIting Evatieon (0) into rEsptn Also, a good rule of thumb to remember is to use

(10). taking the derivative of RSQ with respect ~ smetepninw.ihaeutl ace
to each n the unknown coefficients (Ck) and the simplest expansion which adequatelymatches

srtting- *iual to zero, after some manipulation that particular set of data. With these

ime can arrive at the following matrix equation, considerations in mind, the CT expansions using
the various techniques previously discussed are

7= (Aik)- 1 Bk (I1) presented to show the applicability and

where versatility of these methods. Furthermore, they
graphically illustrate to anv potential user that
the more conventional continuous functions are
not the only choices available.

a.id
Figure 6 shows the comparison of the

classical quadratic (Equation 2) with the fourth

order polynomial including both the ea and
" CDv terms (Equation 3). As shown in this

figure, the fourth order polynomial resulted in a

* '1.pre, r is the matrix of corrections to be added significantly better fit to the four separate

to each of the unknown coefficients to he flights than the quadratic (note sum of the

!eterminp! ;ncluding the iniial conditions Xe residuals squared, RSQ, for both expansions).

in N,,. I ncP the experimental data is compared However, this should not he unexpected since

t tho nimpricallv integrated -ogition profile in the fourth order polynomia! has three

.1 -ist iares sense, the cirrections to the additional unknown coefficients (a. C04 ,
",wn..... "2ints find wtm conditions can Cv), and this added flex;i-litv would

. .r.rpfai i rqati '' . be expected to yield a lwer RSO. The real

.6 question here is whether ,r not rte dramatic r 1"e

n7. Ieos through A are then repeated, in C0 at Lhe highest angles of attack is
-r 'ow~v idjisted c-",cients ,and initial real. The four flights iqed for these

'it{ q'in. .in the Process :-,itinttes until comparisons had a total ,f 130 data points of
-,,'.'rnce is ow'ai-,e. which only four data points possessed angles of

"4 attack greater than 70 lo,ro"s. uence the adde'4

' 1i*,Ts AN ) flexibilitv mav be proviiinR erronPeoUS res
'

ultq at

the higher angles of attack. This would he
"o',, ,.qr!mnated total ]r ,e'!icient (C0) especially true if one 'f the four data points.

tined usinR !".e virious expansion above 2n degrees, is in error. 4ormall, because
, ,,;.ations (2) :hrough (6), are shown of the paucity of data at the higher angles of

-5'rough S ah teeCT
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attack, the C o expansions would onl v be The comparison of the three segment linear

presented up to about ?0 degrees. ut for the spline, Equation (4) with n-3, containinp fix-'.
(of this paper, the expansions are shown knot locations to the two segment linear

up to the maximua angle of attack. (also Equation 4 with n=2) containin a i,
knot location is shown in Figure 7. " i,,.,,

It is also of interest to see the effect of illustrates that the fit containing tr.,

the variouc terms in the fourth order polvnomial segments is superior to the two segment- rt, , !

Fquation (Wi• Table I presents the results with the floating knot (note RSn for t i
, "ir.nn five different cses wit This result is no, t, be unexpected :oc r'

vi, term- ie'.Aat 7i-ro in the fourth order qualitv of fit eh,2: im.:rw, hv in , .. ,
po!,:nom1 !. ' s," I shown in this table nimber of segment-. 61iat is intere,."
represents the clasicn! quadratic as plotted in the sum of the resilual squared for t.-,
Figure ',. segment case is t'e same as th, fmirt

polynomial shown n Figure '
for both). Tt is suqpected that this ril
of the fortuitotis knt location (ar,: ,
bv dividing the s opace into three ev'

segments) at 1R.1 degrees.

3.0

______2.5 .- '. .":,:'. ",

" 2.0

" " .2. , ' -. -!.17 C FLOAI Vr.2 K.' "
-"" 1.5 .q = ; Jr2 ' . -.

C ( 14.68 0 35.18
a 0 (i.0

0 4
P '1 0 -(" .(,.(-;. 2 deq

F to . 7 C,. l, . 2t
Case S represents the complete fourth orde i ts I c :
polynomial expansion, also shown in Figure 6.
Cases 2 through 4 represent the results obtained
when the remaining three unknown coefficients, 4.0 .DNTINUO'S ,~~RS, 0.10C ;- .
CDN, CD4 , and a, are included in the 0.u3C f-
reduction routine. When viewing the results 3.0
shown in Table I, it is aparent that the CD
term is important for this particular set of vdata :,IN::s'C: AN.,
(note RSQ for Case 2 compared with Case 1) and ".0
appears to be consistentlv determined for all 2.0 RSZ C.:59 ft

2

cases. What is remarkable about the results 6 - -.
shown in this table is the dramatic improvement 1.0 .
in the overall quality of fit (lower RSQ) when
all of the unknown coefficients are determined
simultaneously (see Case 5). This indicates that of
this particular set of time-position data 0 4 2 : .
requires a relatively complex expansion of CD
with angle of attack and velocity.

a. Qiadratic splines piotte .

2.5 FOURTH ORDER
CD -o CD28

2  
+ CD4g 4 + CDv(.-,V" CONTINUOUS

2.0 - RS - 0,016 ft
2  

d4 I0 0 40 00

0 339-

..... 0 .. .. .. 2.0 L A D S, PE

' 0.5 CD - CDo * C029 2 1.0 ' "

RSO 0.170 ft
2

". 0 6 2 24 28 200 400 600 800

" S2. deq,?

b. Qjadrac ic spl ines piotr-d v 
,

ot-. p ( r ; i s on of" , z ic quadrat ic i:n Fig. 8 ComL- ;risor of cluijdrat! - {, ' ':
" fourth order expansions con[tinuous anti di-.c , :tr. 7,: .,:
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The quadratic slinea with a continuous CD many of the program modifications required during

expansion only (Equation 5) and a continuous CD this investigation.

and slope expansion (Equation 6) are compared in

Figure 8. Part a of this figure showr both REFERENCES

expansions plotted against '; whereas, Part b

shows the expansions plotted vs '2. Neither of I. Murphy, C. N., "Data Reduction for Free

these expansions resulted in a fit to the chosen Flight Spark Ranges", Ballistic Research

set of data as well as the fourth order Lab., Aberdeen Proving "ound, Rept. 900,
polynomial or the three segment linear spline. February 1954.

noth of these expansions also contain a 2. Murphy, C. H., "Free Flight Motion of

condition in which the coefficient extraction Symetric Missiles", Ballistic Research Lab.,

technique becomes indeterminate. This condition Aberdeen Proving Ground, Rept. 1216, July

exists when the user permits the knot location to 1961.

be a free variable and the slope of the first
segment is nearly equal to the slope of the 3. NMcolaides, J. D., "Free Flight Dynamics".
second segment (CI'Ca). When this occurs, tUniversitv of Notre Dame, South Rend,

the minimum RSO is insensitive to the location of Indiana, 1967.

the knot and the iteration process fails to

converge. However, if it is recognized that this 4. Nicolaides, J. D., "On the Free Flight

condition exists, the knot location can be held Motions of Missiles Having Slight

constant and the iterative process again bh.omes ronfigurational Asivywetrics". 9allistic

stable. This condition is also indicative of an Research Lab., Aberdeen Proving Ground,

overly efined svqtem. For instance. a single Rent. R5R, June IOSI.

quadratic expansion wouol fit the data as well as

the two quadratic expansions splined together. . Eikenberrv, R. S., "Analysis of the Angular

It seems for the set of data used, neither Motion of Missiles", Sandia Rept. SC-CR-70-

quadratic expansion appears to be advantageous. 6051, February 1970.

Nevertheless, this technique loes appear to hold

promise for modeling other aer'dvnamvc A, 'urphv, C. H., "The Measurement jf Non-Linear

,effi-cntq which are h io q,,nlivear such as Forces and Moments by Means of -,e Flight

m. e rq tr-. Tests", Rallistic Research Lab., Aberdeen
Proving Ground, Rept. 974, February 1956.

K'h irin. (',. T., and Kirk, ). S., "A Method

"irio,,s total 1rax e''nt 'xnansons for Fxtracting Aerodynamic Coefficients from

liine n,1vnomials and'r !wIqs have "een Vree Flight Oats", A!AA Journal, Vol. R,
hev.,loned and cmpared. A -t )! ',,ur flights April 1Q70. pp. 7V3-7S7?.

was Relected to show the ato>cshtlitv and

vr'at!;Ctv ,; these moth 1q. . Whvto, R. H., Winchenhach. r. I, and
'athawav, W. H., "Subsonic Free-Flight Data

Al! of the expansions provided a better fit for a Complex Asvmetric Missile", Journal

to th. experimental data than the classic linear of Guidance and Control, Vol. 4, Number I,
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